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A fractional-step method for solving the incompressible Navier–Stokes equations
on overset grids is derived as a matrix factorization of the spatially and temporally
discretized system of equations. The algorithm is applied to several test problems us-
ing second-order-accurate finite-volume flux differencing on staggered grid systems
and a hybrid implicit/explicit time advancement scheme. Spatial order of accuracy is
shown to depend on the behavior of the overset grid overlap during grid refinement.
The temporal order of accuracy of the time advancement algorithm on a single grid
is maintained on the overset grid. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In complex flow configurations the use of overset grids can simplify considerably the
gridding and solution processes. Consider an array of spheres in a box of incompressible
turbulence. A single unstructured grid could be used but the gridding procedure would be
complex and the grid would need to be regenerated if the spheres were to move. Alternatively,
a single Cartesian background grid with overset spherical grids could be used. In this case
all the grids are structured and the spheres could move without any modifications to the
grid system. A natural decomposition of the problem also occurs with overset grids, which
allows for parallel implementation of the solution procedure.

Many authors have used overset grids to solve the unsteady, incompressible Navier–
Stokes equations. Kiris et al. [7] used artificial compressibility to solve for the flow in
artificial heart devices. Tu and Fuchs [16] used a multigrid procedure to solve for the flow in
an internal combustion engine with a moving boundary. Other authors have used projection
methods where the solution to an elliptic equation is used to update the pressure and enforce
the incompressibility constraint. Perng and Street [13] used a predictor–corrector time
advancement scheme with a multigrid algorithm for the solution of the pressure equation.
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Hinatsu and Ferziger [6] used a similar numerical technique, but they considered cases
where nodes from different component grids did not overlap exactly as in [13]. Closely
related to the projection methods is the solution of the velocity–pressure formulation of
the Navier–Stokes equations. Henshaw [5] has developed a spatially fourth-order-accurate
overset grid method for this formulation.

Here we develop a fractional-step method specifically for the solution of the unsteady,
incompressible Navier–Stokes equations on overset grids. The algorithm is developed using
an approximate matrix factorization of the spatially and temporally discretized system
of equations, as was done by Dukowicz and Dvinsky [4] and Perot [14] for solution of
the unsteady, incompressible Navier–Stokes equations on a single grid. The factorization
elucidates all details of the coupling between the component grids, including the pressure
coupling considered by other authors using pressure projection methods on overset grids
[6, 13]. The derivation of the general algorithm is independent of the grid scheme, spatial
discretization, and time advancement scheme to ensure a wide range of application.

An important part of the development of any numerical scheme is the validation of the
spatial and temporal orders of accuracy. Henshaw [5] has validated the fourth-order spatial
accuracy of his overset grid method. However, other authors [6, 13] do not include relevant
spatial order of accuracy results. These authors also run time-accurate, fully explicit codes
on steady-state problems and thus do not validate the temporal order of accuracy. We wish to
compute unsteady problems with a hybrid implicit/explicit time advancement scheme and
permit different treatment of terms on different component grids. Therefore, it is important
to validate the temporal order of accuracy. We apply our overset grid algorithm to various test
problems to show that the predicted spatial and temporal orders of accuracy are maintained.

2. NUMERICAL METHOD

The current work focuses on solving the unsteady, incompressible Navier–Stokes
equations in dimensionless form,

∂u
∂t

+ (u · ∇)u = −∇ p + 1

Re
∇2u, (1)

∇ · u = 0, (2)

on an overset grid. An example of an overset grid suitable for solving for the flow in a
square domain is shown in Fig. 1. Here we define an overset grid as a combination of
component grids where interpolation from another component grid is required on some
portion of each component grid boundary to determine the solution. One component grid
may completely overlap another, as shown in Fig. 1, or the overlap region may only include
some fraction of each of the component grids. Though the overset grid may be composed
of an arbitrary number of component grids, a two-grid system is sufficient to demonstrate
the matrix factorization that leads to our fractional-step method for overset grids. The
fractional-step method on an overset grid composed of more than two component grids is
a simple extension of the algorithm derived here. If desired, the matrix factorization can be
performed on systems with more than two component grids, but the linear algebra becomes
cumbersome.
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FIG. 1. Sample overset grid system composed of two component grids.

2.1. Single-Grid Method

The derivation of the overset grid fractional-step method is similar to the derivations
of single-grid fractional-step methods considered by other authors [4, 9, 14]. In order to
simplify the discussion of the overset grid fractional-step method and to help highlight
the differences between the single-grid and overset grid solution procedures, we begin by
considering the solution of Eqs. (1) and (2) on a single grid.

2.1.1. Spatial Discretization

The equations are first discretized in space using the chosen grid scheme and spatial
discretization. We can write the spatially discretized equations in matrix form as

∂u
∂t

= −Gp − Gbc pbc + N (u, ubc) + Mu + Mbcubc, (3)

Du + Dbcubc = 0, (4)

where u is the spatially discretized velocity vector and p is the spatially discretized pressure.
The spatially discretized velocity and pressure are each split into an unknown part (u and p)
that must be solved for and the part which is a given boundary condition (ubc and pbc).
Because of this splitting, the spatial discretization of the terms in the continuous equations
must also be split. The contribution of the viscous terms in Eq. (3) is represented as Mu +
Mbcubc, where M and Mbc are matrices that contain the spatial discretization information.
The contribution of the pressure gradient is written as a pair of matrix–vector products, Gp
and Gbc pbc. Since the nonlinear term cannot be written as a matrix–vector product where
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FIG. 2. Two-dimensional staggered grid.

the matrix is independent of the velocity we write it as N (u, ubc). The discrete continuity
equation (4) contains a pair of matrix–vector products.

The terms in Eqs. (3) and (4) depend on the grid scheme and discretization and some
of the terms may not be present in all cases. In a problem with periodic boundary condi-
tions, all of the values in the spatially discretized velocity vector and pressure are unknowns
and the terms in Eqs. (3) and (4) due to boundary conditions will not appear. If a stag-
gered grid with second-order-accurate differencing is chosen for the spatial discretization,
then pressure boundary conditions are not required and the Gbc pbc term does not appear
in Eq. (3). To help clarify the matrix form of the spatially discretized equations, we con-
sider a second-order spatial discretization of the two-dimensional form of Eqs. (1) and (2)
on a uniform staggered grid in a square domain. The grid is shown in Fig. 2. Included in
the diagram are the ghost nodes outside the grid that may be required to enforce bound-
ary conditions on the velocity. Here we will assume that the velocity is prescribed at the
boundary of the grid. Therefore, the ghost nodes are used so that the tangential com-
ponent of velocity (computed with a two-point average) obeys the prescribed boundary
condition.

For each of the u nodes inside the grid boundary in Fig. 2, the spatially discretized
momentum equation is

∂ui, j

∂t
= − pi+1, j − pi, j

�x
+ 1

Re

(
ui+1, j − 2ui, j + ui−1, j

�x2
+ ui, j+1 − 2ui, j + ui, j−1

�y2

)

− (uu)i+1, j − (uu)i, j

�x
− (uv)i, j − (uv)i, j−1

�y
for (i, j) = (1, 1) : (3, 4), (5)
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and for each of the v nodes inside the grid boundary, the spatially discretized momentum
equation is

∂vi, j

∂t
= − pi, j+1 − pi, j

�y
+ 1

Re

(
vi+1, j − 2vi, j + vi−1, j

�x2
+ vi, j+1 − 2vi, j + vi, j−1

�y2

)

− (uv)i, j − (uv)i−1, j

�x
− (vv)i, j+1 − (vv)i, j

�y
for (i, j) = (1, 1) : (4, 3). (6)

The continuity equation is discretized at the location of the pressure nodes and can be
written as

ui, j − ui−1, j

�x
+ vi, j − vi, j−1

�y
= 0 for (i, j) = (1, 1) : (4, 4). (7)

Note that the u velocity node to the right of and the v velocity node above each pressure
node have the same (i, j) index as the pressure node.

We now can describe the form of the vectors and matrices in Eqs. (3) and (4) for the
grid in Fig. 2. The unknown velocity vector, u, has 24 elements and the unknown pressure
vector, p, has 16 elements. The velocity boundary condition vector, ubc, has 28 elements,
where 16 are due to the boundary condition on the normal component of the velocity and the
remaining 12 are due to the boundary condition on the tangential component. The G matrix
is of size 24 by 16 and only two elements in any row of the matrix are nonzero. As discussed
previously, the Gbc term in Eq. (3) does not appear since pressure boundary conditions are
not required on a staggered grid. The M matrix is of size 24 by 24 and the Mbc matrix is of
size 24 by 28. Our second-order discretization of the viscous term in Eqs. (5) and (6) uses
a five-point stencil. Therefore, the combined number of nonzero entries in the same row of
the M and Mbc matrices must be five. If the row corresponds to the equation for a velocity
node adjacent to two boundaries, then the M matrix will have three nonzero entries and the
Mbc matrix will have two nonzero entries. Similarly, all five nonzero entries will appear in
the M matrix if the row corresponds to the equation for a velocity node that is not adjacent
to a boundary. The form of the discrete nonlinear operator, N (u, ubc), can be inferred from
Eqs. (5) and (6). In Eq. (4), the D matrix is of size 16 by 24 and the Dbc matrix is of size 16
by 28. Since the discretized continuity equation (7) uses four velocity nodes, the combined
number of nonzero entries in the same row of the D and Dbc matrices must be four.

2.1.2. Temporal Discretization

After spatial discretization is complete, a temporal discretization scheme is applied to
Eqs. (3) and (4). As an example, consider time advancement with third-order Runge–Kutta
for the convective terms, Crank–Nicolson for the viscous terms, and implicit Euler for the
pressure gradient term. This three-step time advancement scheme [15] can be written as

[I − βk�t M]uk + 2βk�tGδpk

= uk−1 + βk�t
[
Muk−1 + Mbcuk−1

bc + Mbcuk
bc

] + γk�t N
(
uk−1, uk−1

bc

)
+ ζk�t N

(
uk−2, uk−2

bc

) − 2βk�t
[
Gpk−1 + Gbc pk

bc

]
, (8)

Duk + Dbcuk
bc = 0, (9)
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where k = 1, 2, 3 is the substep index, u0 is the solution at the beginning of the time step
(un−1), and u3 is the solution at the end of the time step (un). Note that we have written
the unknown pressure term in delta form, where δpk = pk − pk−1. The coefficients for this
time advancement scheme are

β1 = 4

15
β2 = 1

15
β3 = 1

6

γ1 = 8

15
γ2 = 5

12
γ3 = 3

4
(10)

ζ1 = 0 ζ2 = −17

60
ζ3 = − 5

12
.

The spatially and temporally discretized system of equations can now be written in a
compact, block matrix form as follows:

[
B H
D 0

] [
un

δpn

]
=

[
rn−1

0

]
+

[
bc′s
bc′s

]
. (11)

Here we have lumped the contribution to the right hand side from the previously computed
solution into one vector, rn−1, and all the boundary condition information into another vector
to simplify the notation. Any choice of spatial and temporal discretization of Eqs. (1) and
(2) where the nonlinear terms are treated explicitly can be written in the block matrix form
of Eq. (11). If the chosen temporal discretization involves multiple substeps to complete a
full time step, as in Eq. (8), then Eq. (11) will be solved at each substep.

2.1.3. Block LU Decomposition

In order to avoid solving the fully coupled system in Eq. (11), we wish to find an ap-
proximate factorization of the matrix on the left hand side. To perform the factorization, we
consider a modified version of Eq. (11):

[
B BH
D 0

] [
un

δpn

]
=

[
rn−1

0

]
+

[
bc′s
bc′s

]
. (12)

In this new system, the pressure gradient term in the momentum equations has been modi-
fied. For the time advancement algorithm in Eq. (8), the new term can be written as Hδpk −
2(βk�t)2 MGδpk . This differs from the original term by O(�t3) since δpk is O(�t).
Therefore, the solution of Eq. (12) is equivalent to the solution of Eq. (11) with an extra
error term of O(�t3) on the right hand side. Since this error term is of the same order
as the temporal discretization error associated with Crank–Nicolson time advancement,
we maintain the temporal order of accuracy of our solution by solving Eq. (12). Other
choices of second-order implicit/explicit time advancement algorithms will produce a sim-
ilar result.

We perform a block LU decomposition of the matrix on the left hand side of Eq. (12):

[
B 0
D −DH

] [
I H
0 I

] [
un

δpn

]
=

[
rn−1

0

]
+

[
bc′s
bc′s

]
. (13)
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Using this LU decomposition, we solve Eq. (12) in three steps. First we obtain an interme-
diate velocity field, ũn:

Bũn = rn−1 + bc′s. (14)

Next we solve a discrete Poisson equation for the pressure change:

DHδpn = Dũn − bc′s. (15)

Finally, the solution to the discrete Poisson equation is used to project the intermediate
velocity field to a divergence-free subspace:

un = ũn − Hδpn. (16)

Similar factorizations for systems where both the velocity and pressure unknowns are
in delta form were considered by Dukowicz and Dvinsky [4]. Perot [14] has developed
approximate factorizations for systems where neither the velocity nor pressure unknowns are
in delta form. A more general approach was taken by Lee et al. [9], who recently derived all
possible exact and approximate factorizations of the matrix on the left hand side of Eq. (11)
that lead to useful fractional-step algorithms. A common conclusion reached by all these
authors who use approximate factorization to derive fractional-step algorithms is that while
the second-order temporal accuracy of the solution of the velocity field can be maintained,
the pressure is only first-order accurate in time. While approximate factorization of the fully
discretized system of equations is an easy way to develop fractional-step algorithms, it is
also possible to perform a time splitting on the semidiscrete version of the Navier–Stokes
equations where only the time is discretized. While there are drawbacks to this approach
[14], Brown et al. [1] have recently shown results from fractional-step algorithms derived
in this way that indicate that the pressure can be second-order accurate in time.

2.1.4. Temporal Order of Accuracy of the Pressure

We now perform analysis to investigate the temporal order of accuracy of the computed
pressure for our fractional-step algorithm using the time advancement algorithm in Eq. (8).
Similar analyses can be done for other time advancement algorithms. At each substep, the
intermediate velocity field is determined from the solution of

[I − βk�t M]ũk = uk−1 + βk�t
[
Muk−1 + Mbcuk−1

bc + Mbcuk
bc

]
+ γk�t N

(
uk−1, uk−1

bc

) + ζk�t N
(
uk−2, uk−2

bc

)
− 2βk�t

[
Gpk−1 + Gbc pk

bc

]
. (17)

This equation can then be rewritten using the appropriate form of Eq. (16):

ũk = uk−1 + βk�t
[
Muk−1 + Mbcuk−1

bc + Muk + Mbcuk
bc

]
+ γk�t N

(
uk−1, uk−1

bc

) + ζk�t N
(
uk−2, uk−2

bc

)
− 2βk�t

[
Gpk−1 + Gbc pk

bc

] + 2(βk�t)2 MGδpk . (18)
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The discrete Poisson equation that is solved for the pressure change at each substep is

DGδpk = Dũk + Dbcuk
bc

2βk�t
. (19)

Using Eq. (18) we can now substitute for the intermediate velocity in the discrete Poisson
equation for the pressure change and derive the equivalent discrete Poisson equation for the
pressure, pk :

DGpk = D

[
1

2

(
Muk−1 + Mbcuk−1

bc + Muk + Mbcuk
bc

)+ γk

2βk
N

(
uk−1, uk−1

bc

)

+ ζk

2βk
N

(
uk−2, uk−2

bc

)− Gbc pk
bc + βk�t MGδpk

]
+ D

[
uk−1

2βk�t

]
+ Dbc

[
uk

bc

2βk�t

]
.

(20)

Using the discrete continuity equation (9), we consider Eq. (20) for the third substep since
it is the pressure at the end of the time step:

DGp3 = D

[
1

2

(
Mu2 + Mbcu2

bc + Mu3 + Mbcu3
bc

) + γ3

2β3
N

(
u2, u2

bc

)

+ ζ3

2β3
N

(
u1, u1

bc

)− Gbc p3
bc + β3�t MGδp3

]
+ Dbc

[
u3

bc − u2
bc

2β3�t

]
. (21)

We now perform a Taylor series expansion in time about t3 for the terms on the right hand
side of Eq. (21):

DGp3 = D

[
Mu3 + Mbcu3

bc − β3�t

(
∂ Mu
∂t

+ ∂ Mbcubc

∂t

)∣∣∣∣
t3

+
(

γ3

2β3
+ ζ3

2β3

)
N

(
u3, u3

bc

) −
(

γ3 + ζ3(β2 + β3)

β3

)
�t

∂ N (u, ubc)

∂t

∣∣∣∣
t3

− Gbc p3
bc + O(�t2)

]
+ Dbc

[
∂ubc

∂t

∣∣∣∣
t3

− β3�t
∂2ubc

∂t2

∣∣∣∣
t3

+ O(�t2)

]
. (22)

The continuous time equation for DGp is derived by multiplying Eq. (3) by the D matrix
and using the time derivative of Eq. (4):

DGp = D[Mu + Mbcubc + N (u, ubc) − Gbc pbc] + Dbc
∂ubc

∂t
. (23)

Note that this equation is not necessarily consistent with a discretization of the equation for
the pressure that is derived by performing a similiar sequence of operations on the spatially
continuous equations:

∇2 p = −∇ · (u · ∇u). (24)

At no point in the approximate factorization derivation of fractional-step methods is a
spatially continuous Poisson equation discretized in space. The discrete Poisson equation
is a by-product of the approximate factorization of the spatially and temporally discretized
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incompressible Navier–Stokes equation. Attempts to compare the calculated pressure from
an approximate factorization fractional-step method to a spatially discretized version of
Eq. (24) appear to be misdirected. If a numerical solution for the pressure that obeys a
discretization of Eq. (24) (and the associated boundary conditions) is desired, then the
velocity–pressure formulation of the Navier–Stokes equations should be used instead of the
velocity–divergence formulation.

Using the coefficients in Eq. (10) and comparing Eq. (22) and Eq. (23) we see that the
source terms agree to first order in time. Therefore, our computed pressure will be first-
order accurate in time. Attempts to improve the time accuracy of the pressure in situations
where Eq. (23) is not consistent with a discretized version of Eq. (24) are not useful since
the computed pressure may not obey the correct boundary conditions and therefore cannot
be used for evaluating flow quantities of interest. Of course, a temporally second-order-
accurate pressure that obeys the correct boundary conditions can be obtained at any point in
time by using the temporally second-order-accurate velocity components in a discretization
of Eq. (24).

In situations where Eq. (23) is consistent with a discretization of Eq. (24), higher order
temporal accuracy in the pressure is desirable. Here we perform an analysis to see if the
computed pressure can be made second-order accurate in time by using Crank–Nicolson
for the time integration of the pressure gradient term in the spatially discretized momentum
equations. The discrete Poisson equation for the pressure at t3 can be written by combining
the discrete Poisson equations for the pressure change at each of the three substeps:

DGp3 = D

[
Mu0 + Mbcu0

bc + Mu3 + Mbcu3
bc − Gbc p0

bc − Gbc p3
bc

+
(

γ1

β1
− ζ2

β2

)
N

(
u0, u0

bc

) +
(

ζ3

β3
− γ2

β2

)
N

(
u1, u1

bc

) + γ3

β3
N

(
u2, u2

bc

)

+ β1�t MGδp1 − β2�t MGδp2 + β3�t MGδp3

]
− DGp0

+ Dbc

[
u1

bc − u0
bc

β1�t
− u2

bc − u1
bc

β2�t
+ u3

bc − u2
bc

β3�t

]
. (25)

If we assume that the pressure at the beginning of the time step obeys Eq. (23) then we can
rewrite Eq. (25) using a Taylor series expansion in time about t0:

DGp3 = D

[
Mu3 + Mbcu3

bc − Gbc p3
bc +

(
γ1

β1
− γ2

β2
+ γ3

β3
− ζ2

β2
+ ζ3

β3
− 1

)
N (u, ubc)|t0

+ 2�t

(
β1

(
ζ3

β3
− γ2

β2

)
+ (β1 + β2)

γ3

β3

)
∂ N (u, ubc)

∂t

∣∣∣∣
t0

+O(�t2)

]

+ Dbc

[
∂ubc

∂t

∣∣∣∣
t0

+ 2�t (β1 + β2 + β3)
∂2ubc

∂t2

∣∣∣∣
t0

+O(�t2)

]
. (26)

Using the coefficients in Eq. (10) and comparing to Eq. (23), we see that the source terms
agree to first order in time due to the nonlinear term Taylor series expansion. The source
terms can be made to agree to second order in time by choosing coefficients for the three-step
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time advancement algorithm such that

γ1

β1
− γ2

β2
+ γ3

β3
− ζ2

β2
+ ζ3

β3
− 1 = 1

(27)

β1

(
ζ3

β3
− γ2

β2

)
+ (β1 + β2)

γ3

β3
= 1

2
.

A new set of coefficients that obey the constraints in Eq. (27) are

β1 = 4

15
β2 = 1

15
β3 = 1

6

γ1 = 8

15
γ2 = 5

28
γ3 = 143

84
(28)

ζ1 = 0 ζ2 = − 19

420
ζ3 = −115

84
.

Unfortunately, these new coefficients reduce the explicit term time advancement scheme
to second-order temporal accuracy. However, the Crank–Nicolson treatment of the viscous
terms limits the temporal order of accuracy to second order and so the loss of time accuracy
in the explicit scheme is not significant. The stability regions for the explicit schemes from
the two sets of coefficients are almost identical.

We have shown that it is possible to achieve second-order temporal accuracy for the
computed pressure by using Crank–Nicolson for the time integration of the pressure gra-
dient term and modifying the coefficients of the three-step time advancement algorithm.
However, this treatment of the pressure gradient term can lead to numerical difficulties due
to oscillations in the pressure field [14]. In addition, the discretizations we consider here
make Eq. (23) inconsistent with a discretization of Eq. (24), so temporally higher order
accurate pressure is not useful. Therefore, we use implicit Euler treatment for the pressure
in this work.

2.2. Overset Grid Method Development

The spatial and temporal discretization (with explicit treatment of the nonlinear terms) of
the incompressible Navier–Stokes equations on an overset grid composed of two component
grids leads to a system of algebraic equations Ax = b shown in Eq. (29). The dependent
variables that make up the solution vector, x, are the velocity vector, un , and the pressure
change, δpn = pn − pn−1, for each component grid, where the numerical subscripts denote
the component grid index. As was the case for the single-grid algorithm, the solution vector
in Eq. (29) only contains unknown velocity or pressure nodes in the interior of the domain
while the influence of boundary conditions appears on the right hand side. The system
matrix, A, is composed of several different submatrices. The C and E submatrices contain
interpolation weights for the velocity and pressure nodes, respectively. The B, D, and H
submatrices contain the discretization of the implicitly treated terms, divergence operator,
and gradient operator, respectively.

The discretized velocity vector on each component grid is split into two parts. Each
component grid will be composed of some nodes that are time advanced using the Navier–
Stokes equations, and others that are obtained by interpolation from another component
grid. Nodes that are obtained by interpolation will be referred to as pseudoboundary nodes
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since they are located on or outside boundaries of the component grids that are not physical
boundaries of the flow domain, as illustrated in Fig. 1. The discretized pressure on each
component grid is also split into two parts since pseudoboundary values of pressure may
be required, depending on the grid scheme and spatial discretization. The pseudoboundary
nodes of the solution vector in Eq. (29) are denoted with an extra b subscript.

The update equations for the pseudoboundary nodes are simple interpolation relation-
ships. For example, un

1b = C1un
2 and δpn

2b = E2δpn
1 . The update equations for the other nodes

include the discretizations of the terms in the incompressible Navier–Stokes equations.
The differencing stencils used to evaluate the terms will include contributions from pseu-
doboundary nodes. For this reason, each of the discretization submatrices (B, D, and H )
on each component grid is split into two parts to include the contributions to the equations
from both interior and pseudoboundary nodes.

In addition to pseudoboundary nodes, Fig. 1 shows that component grids may also contain
hole nodes which are removed from the solution vector since they are in physical locations
where other component grids are used to determine the solution. Algorithmic details on
the classification of the nodes in an overset grid system can be found in [2]. Note that
here we do not allow pseudoboundary nodes on one component grid to be interpolated
using pseudoboundary nodes from another component grid. This imposes a component
grid overlap requirement based on the width of the interpolation stencil.




I 0 0 −C1 0 0 0 0

B1b B1 0 0 H1b H1 0 0

0 −C2 I 0 0 0 0 0

0 0 B2b B2 0 0 H2b H2

0 0 0 0 I 0 0 −E1

D1b D1 0 0 0 0 0 0

0 0 0 0 0 −E2 I 0

0 0 D2b D2 0 0 0 0







un
1b

un
1

un
2b

un
2

δpn
1b

δpn
1

δpn
2b

δpn
2




=




0

rn−1
1

0

rn−1
2

0

0

0

0




+




bc′s

bc′s

bc′s

bc′s

bc′s

bc′s

bc′s

bc′s




. (29)

If the time advancement algorithm of Eq. (8) is applied on both component grids, then
the submatrices for component grid 1 in Eq. (29) are

B1b = −βk�t M1b, (30)

B1 = I − βk�t M1, (31)

H1b = 2βk�tG1b, (32)

H1 = 2βk�tG1, (33)

and similar relationships hold for the component grid 2 submatrices.

2.2.1. Block LU Decomposition

The goal in the development of the fractional-step method on a single grid was to avoid
solving the fully coupled velocity–divergence system simultaneously. The same goal holds
for the development of the fractional-step method for an overset grid system, which is more
complex than the single-grid system due to the coupling between component grids. We
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wish to perform a block LU decomposition of the matrix A in Eq. (29). In order to perform
the decomposition, consider the matrix A′:

A′ =




I 0 0 −C1 0 0 0 0

B1b B1 0 0 B1 H1b B1 H1 B1bC1 H2b B1bC1 H2

0 −C2 I 0 0 0 0 0

0 0 B2b B2 B2bC2 H1b B2bC2 H1 B2 H2b B2 H2

0 0 0 0 I 0 0 −E1

D1b D1 0 0 0 0 0 0

0 0 0 0 0 −E2 I 0

0 0 D2b D2 0 0 0 0




. (34)

This differs from A only in the upper right quadrant. As was the case for the single-grid
algorithm, the pressure gradient terms in the momentum equations using the modified system
matrix, A′, are different from those using the original system matrix, A. In particular, the
submatrices that include the contribution to the momentum equation on one component grid
from the pressure gradient on the other component grid are now nonzero. Using the time
advancement algorithm in Eq. (8), it is easy to show that the modifications to the system
of equations due to the substitution of A′ for A are O(�t3). Therefore, the temporal order
of accuracy is unchanged by the substitution of A′ for A. Other choices of second-order
implicit/explicit time advancement schemes will permit the same substitution. In the fully
explicit case where B1 = B2 = I and B1b = B2b = 0, A and A′ are identical and the temporal
order of accuracy of the explicit scheme is maintained.

A block LU decomposition of the matrix A′ can be performed where

L =




I 0 0 −C1 0 0 0 0

B1b B1 0 0 0 0 0 0

0 −C2 I 0 0 0 0 0

0 0 B2b B2 0 0 0 0

0 0 0 0 I 0 0 −E1

D1b D1 0 0 −D1 H1b −D1 H1 −D1bC1 H2b −D1bC1 H2

0 0 0 0 0 −E2 I 0

0 0 D2b D2 −D2bC2 H1b −D2bC2 H1 −D2 H2b −D2 H2




(35)

and

U =




I 0 0 0 0 0 C1 H2b C1 H2

0 I 0 0 H1b H1 0 0

0 0 I 0 C2 H1b C2 H1 0 0

0 0 0 I 0 0 H2b H2

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I




. (36)
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2.2.2. Solution Procedure

Now that we have the LU decomposition of A′, we can solve A′x = b in two steps, L x̃ = b
and Ux = x̃. The solution of L x̃ = b can be decomposed into the solution of two systems.
First the momentum equations are used to obtain an intermediate velocity field, ũn ,




I 0 0 −C1

B1b B1 0 0

0 −C2 I 0

0 0 B2b B2







ũn
1b

ũn
1

ũn
2b

ũn
2


=




0

rn−1
1

0

rn−1
2


 +




bc′s

bc′s

bc′s

bc′s


, (37)

and the change in the pressure field, δ p̃n , is then obtained using the intermediate velocity
field:




−I 0 0 E1

D1 H1b D1 H1 D1bC1 H2b D1bC1 H2

0 E2 −I 0

D2bC2 H1b D2bC2 H1 D2 H2b D2 H2







δ p̃n
1b

δ p̃n
1

δ p̃n
2b

δ p̃n
2




=




0 0 0 0

D1b D1 0 0

0 0 0 0

0 0 D2b D2







ũn
1b

ũn
1

ũn
2b

ũn
2


 −




bc′s

bc′s

bc′s

bc′s


. (38)

The solution of Ux = x̃ sets δpn = δ p̃n and projects the intermediate velocity field to a
divergence-free subspace:




un
1b

un
1

un
2b

un
2


=




ũn
1b

ũn
1

ũn
2b

ũn
2


−




0 0 C1 H2b C1 H2

H1b H1 0 0

C2 H1b C2 H1 0 0

0 0 H2b H2







δpn
1b

δpn
1

δpn
2b

δpn
2


 . (39)

Finally, the pressure field is updated using the computed pressure change, δpn . Note that the
steps associated with Eqs. (37)–(39) are identical to the steps in the single-grid fractional-
step method, but the details of the coupling between component grids are now represented.

2.3. Overset Grid Method Implementation

To investigate implementation details of the fractional-step method on overset grids we
consider component grids using a staggered grid arrangement of the dependent variables and
second-order-accurate finite-volume flux differencing. In addition to the well-established
conservation properties of this choice of grid scheme and discretization, all pressure nodes
are in the interior of the domain. Therefore, pressure boundary conditions are not required
at the physical boundaries of the flow domain.
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2.3.1. Momentum Update

The solution of Eq. (37) may be quite complicated depending on the number of component
grids and the coupling between them. However, it may not be necessary to use implicit time
advancement on all the component grids. Consider the case of flow over a cylinder where the
overset grid is composed of a background Cartesian grid and a cylindrical grid to resolve
the flow near the surface of the cylinder. In this case, implicit time advancement would
be desirable on the cylindrical grid to alleviate the time-step restriction, but explicit time
advancement could be used for the background Cartesian grid. If component grid 1 were
treated fully explicitly, then B1b = 0 and B1 = I in Eq. (37), which allows for the solution of
ũn

1 without any information from component grid 2 at time level n. ũn
2b is then determined by

interpolation of ũn
1, and ũn

2 can then be computed. Finally, ũn
1b is determined by interpolation

of ũn
2. The momentum update is always decoupled in this way if explicit time advancement

is used on all component grids.

2.3.2. Poisson Solve

The solution of Eq. (38) corresponds to a fully coupled Poisson solve for the pressure field.
One benefit of using second-order-accurate finite-volume flux differencing on a staggered
grid system is that there are no pressure pseudoboundary nodes. This reduces Eq. (38) to a
more manageable system:

[
D1 H1 D1bC1 H2

D2bC2 H1 D2 H2

] [
δ p̃n

1

δ p̃n
2

]
=

[
D1b D1 0 0

0 0 D2b D2

]



ũn
1b

ũn
1

ũn
2b

ũn
2


−

[
bc′s

bc′s

]
. (40)

Here there is no ambiguity regarding the pressure boundary conditions at the pseudobound-
aries of the component grids. Other authors using pressure projection methods on overset
grid systems have chosen a pressure pseudoboundary condition based on physical reasoning
or convenience. Hinatsu and Ferziger [6] argued that either Dirichlet or Neumann boundary
conditions could be used but they chose Neumann boundary conditions because they were
easier to implement and gave faster convergence in the multigrid solution of the equation for
the pressure. Perng and Street [13] concluded that Dirichlet boundary conditions could be
used in cases where the nodes from the component grids overlapped exactly, but Neumann
boundary conditions should be used when the nodes do not overlap exactly. The matrix
factorization used here makes the choice of the pressure pseudoboundary condition unnec-
essary. The off-diagonal coupling submatrices in Eq. (40), D1bC1 H2 and D2bC2 H1, clearly
connect the pressure fields on the component grids through the interpolation of the pressure
gradient.

Though it is possible to assemble the matrix and solve Eq. (40) directly, here we choose
to solve the system with an iterative scheme. In this case, the off-diagonal coupling terms
are moved to the right hand side and the equations for each component grid are solved
independently. Consider the iterative solution of the equation for the pressure change on
component grid 1,

D1 H1δ p̃n
1 = D1bũn

1b + D1ũn
1 − D1bC1 H2δ p̃n

2 − bc′s, (41)
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where δ p̃n
2 is the current estimate for the solution on component grid 2 and δ p̃n

1 will be the
new estimate for the solution on component grid 1. The matrix D1 H1 is singular since the
pressure is only known up to a constant. A standard technique to remove the singularity is
to replace one of the equations with an equation that sets the level of the pressure [6]. This
technique is valid as long as the replaced equation in the original system can be written
as a linear combination of the other equations. We know that summing the rows of D1 H1

produces a row of zeroes because of the telescoping property of the finite-volume flux
differencing used to construct D1. However, there is no guarantee that the sum of the right
hand sides of Eq. (41) is zero because part of the right hand side comes from interpolation
of the gradient of δ p̃n

2 and the interpolation of the intermediate velocity field on component
grid 2. Therefore, we cannot replace one of the equations, or the solution will not satisfy
the equation that was replaced in the original system (leading to a large divergence in one
cell after projection).

The requirement that the sum of the right hand sides is zero is analogous to the solvability
condition for Laplace’s equation with zero Neumann boundary conditions. To satisfy this
solvability condition for our system, the right hand side must be adjusted so that the sum is
zero. Once the system is solvable, one of the equations can be replaced to set the level of
the pressure and the system is no longer singular.

There is no unique way to perform the right hand side adjustment. The obvious procedure
is to subtract a fraction of the sum of the right hand sides from each equation such that the
sum of the new right hand sides is zero. This adjustment introduces an error into each
equation which leads to a nonzero divergence in each cell after projection. If a uniform
adjustment, q1, is subtracted from the right hand side of every equation in Eq. (41) then the
discrete continuity equation for component grid 1 in Eq. (29) is replaced by

D1bun
1b + D1un

1 = q1 + bc′s. (42)

A similar adjustment will be made during the iterative solution of δ p̃n
2 . This leads to a

different nonzero divergence, q2, on component grid 2 after projection.
The fraction of the sum of the right hand sides used as an adjustment does not have to

be the same in every equation. Our divergence operator was assembled using finite-volume
techniques. Therefore, the nonzero divergence that results by subtracting a constant from
each of the right hand sides in Eq. (41) is volume weighted. On a uniform Cartesian grid, the
divergence will be the same everywhere, but on a uniform cylindrical grid, the divergence
will depend on radial location. However, a volume-weighted adjustment to the right hand
side of Eq. (41) can be chosen to produce a constant divergence on the cylindrical grid after
projection. Alternatively, the adjustment could be weighted so that the divergence of the
solution is smaller in specific regions of interest in the flow domain.

The adjustments, q1 and q2, vary in time due to changes in the flow field and changes
in the interpolation conditions if the component grids are moving relative to one another.
These adjustments are tied to the interpolation of quantities used in the construction of the
right hand side for the Poisson solve. However, they are not tied to the incompatibility of
the discrete operators. Morinishi et al. [12] have shown that the conservation properties of
various grid schemes and discretizations are dependent on the discrete divergence. From a
conservation standpoint, the discrete divergence should be as small as possible. Therefore,
it is advantageous to only have the interpolation conditions contributing to the discrete
divergence.



FRACTIONAL-STEP METHOD ON OVERSET GRIDS 351

The previous discussion applies directly to an iterative solution of Eq. (40). A different
procedure may be necessary for an iterative solution of Eq. (38), depending on the grid
scheme and discretization. In the case where the Poisson solve for all grids is done simul-
taneously as one system of equations, Henshaw [5] suggests solving an augmented system
that is nonsingular.

2.3.3. Initial Condition

The initial condition for Eq. (29) should be divergence free. Provided that the normal
component of the velocity on the physical boundary of the flow domain satisfies global-
mass conservation, the velocities in the interior of the domain can be projected using the
standard technique [5]. Given an initial condition that is not divergence free, ũ0, we define
a new initial condition, u0:

u0
1 = ũ0

1 − G1φ1

u0
2 = ũ0

2 − G2φ2
(43)

u0
1b = C1u0

2

u0
2b = C2u0

1.

By applying the discrete continuity equation to Eq. (43), we obtain a system of equations
for φ:

[
D1G1 D1bC1G1

D2bC2G1 D2G2

] [
φ1

φ2

]
=

[
D1 D1bC1

D2bC2 D2

] [
ũ0

1

ũ0
2

]
+

[
bc′s

bc′s

]
. (44)

The solution of Eq. (44) can be obtained the same way as the solution of Eq. (40). However,
the projected initial condition will not be divergence free for the same reason that the
time-advanced velocity field is not divergence free.

2.3.4. Interpolation Equations

Chesshire and Henshaw [2] have shown that third-order-accurate interpolation is required
to maintain second-order accuracy in the solution of second-order elliptic equations on
an overset grid. Therefore, quadratic interpolation is used to determine the interpolation
submatrices in Eq. (29). Though we can achieve the same spatial order of accuracy as a
single-grid solution with our overset grid solution, the discrete continuity equation cannot be
satisfied in the overset grid case due to the interpolation, as discussed previously. However,
it is possible to make a correction to the interpolation submatrices so that discrete continuity
will be satisfied for the overset grid solution.

If the boundary of a component grid is made up of N nodes, where N1 are physical
boundary nodes and the remaining nodes are pseudoboundary nodes, then any u (x, y, z, t)
that satisfies Eqs. (1) and (2) will also satisfy the discrete integral of the continuity equation
over the component grid to second-order accuracy:

N∑
l=1

ũl dSl =
N1∑

l=1

ũl dSl +
N∑

l=N1+1

ũl dSl = O
(
�2

x , �
2
y, �

2
z

)
. (45)
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Here ũl is the normal component of u at the boundary nodes and d Sl is the discrete normal
area associated with the boundary node. Since the truncation error associated with the
interpolation at the pseudoboundary nodes is third order, we can rewrite the pseudoboundary
portion of the summation in Eq. (45) using the interpolated values, ũ∗

l (assuming that the
grid spacing on the boundary of the component grid is similar to the grid spacing used in
interpolating to the pseudoboundary nodes). We then define new interpolated values of the
normal component of velocity, ũ′

j , at the pseudoboundary nodes,

ũ′
j = ũ∗

j − 1

S∗

[
N1∑

l=1

ũl dSl +
N∑

l=N1+1

ũ∗
l dSl

]
= ũ∗

j + O
(
�2

x , �
2
y, �

2
z

)
, (46)

where S∗ is the total discrete normal area associated with the pseudoboundary nodes on the
component grid. Using these new interpolated values, the discrete integral of the continuity
equation over the component grid is satisfied to machine accuracy:

N1∑
j=1

ũ j dS j +
N∑

j=N1+1

ũ′
j dS j = 0. (47)

Now consider the sum of the right hand sides of Eq. (41). Due to the telescoping properties
of the discrete divergence operator, D1, only the interpolated term D1b(ûn

1b − C1 H2δ P̂n
2 )

and the boundary conditions contribute to the summation. The summation then becomes the
discrete integral of the normal component of velocity over the boundary of the component
grid. We have shown in Eq. (47) that the discrete integral of the normal component of the
velocity is zero for the corrected interpolation weights. This guarantees that the sum of
the right hand sides for the Poisson solve on the component grid will be zero. Therefore,
the right hand sides do not need to be adjusted and the discrete continuity equation will be
satisfied to machine accuracy after projection.

If the modified interpolation weights are used then the discrete continuity equation is
satisfied to machine accuracy and the conservation properties of the second-order-accurate,
staggered grid scheme on each component grid are maintained [12]. However, conservation
is not achieved at the interfaces between the component grids. Chesshire and Henshaw [3]
have shown how to derive conservative interpolation weights for the solution of conservation
laws on overset grid systems. Their method treats both the interpolation weights for the fluxes
and the weights in the numerical approximation of the integral of the conserved quantity
as free parameters that are solved for as part of an overdetermined system of equations.
Wright and Shyy [17] have developed a conservative interpolation scheme for the solution
of the incompressible Navier–Stokes equations based on linear interpolation of mass and
momentum fluxes. Since the derivation of our overset grid fractional-step method requires
that the velocity components are interpolated instead of the fluxes, we do not consider
conservative interpolation in this work. A good review of work on interface treatments and
discussion of conservative treatments for multiblock calculations can be found in the paper
by Liu and Shyy [10].

The correction to the interpolation equations for the normal component of velocity at
pseudoboundary nodes can be used to define a new interpolation submatrix in Eq. (29).
Equation (46) shows that the truncation error associated with the corrected interpolation
weights is second order. Therefore, we will not maintain second-order spatial accuracy if
we use the corrected interpolation weights. If a set of third-order-accurate interpolation
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weights can be found such that Eq. (47) is satisfied, then the spatial order of accuracy can
be maintained along with the conservation properties of the staggered grid scheme. In this
work we will use the noncorrected interpolation weights so that the second-order spatial
accuracy is maintained.

3. NUMERICAL RESULTS

To verify that the predicted spatial and temporal orders of accuracy are maintained, the
overset grid fractional-step method was applied to two-dimensional unsteady problems.
The spatial order of accuracy was validated using the Taylor vortex array. The temporal
order of accuracy was validated using flow over a circular cylinder at Re = 100.

3.1. Spatial Order of Accuracy

The Taylor vortex array is an analytical solution to the two-dimensional, incompressible
Navier–Stokes equations. For Re = 1 (based on the maximum initial velocity and the domain
length divided by 2π ), the solution is

u(x, y, t) = −cos x sin y exp(−2t)

v(x, y, t) = sin x cos y exp(−2t) (48)

p(x, y, t) = −1

4
(cos 2x + cos 2y) exp(−4t).

We solved this problem using an overset grid similar to the one shown in Fig. 1. The
grid points shown in Fig. 1 represent the cell-centered pressure nodes of the staggered
grid system. Since there are no pseudoboundary pressure nodes for our grid scheme and
discretization, the pseudoboundary nodes marked in Fig. 1 correspond to the centers of
the cells along the boundary of the inner grid and also along the hole boundary of the
background grid. Interpolation of the velocity occurs at the boundaries of these cells for the
normal component and half a grid cell outside the boundaries of these cells for the tangential
component, as dictated by the staggered grid arrangement of the dependent variables.

The computational domain is [x1, x2] × [y1, y2] = [0, 2π ] × [0, 2π ] with periodic bound-
ary conditions. The code is set up to allow the centered inner grid to be rotated to any angle
relative to the background grid. The dimensions of the inner grid are half of the corre-
sponding background grid dimensions. As discussed previously, there is a minimum overlap
required to ensure that pseudoboundary nodes are not used for interpolation to another com-
ponent grid. We first identify the background grid nodes used for interpolation to the inner
grid and then choose the background grid hole and pseudoboundary nodes to satisfy the min-
imum overlap requirement. Another way to choose the overlap is to mark background grid
nodes inside a specified spatial region as hole nodes and then identify the background grid
pseudoboundary nodes. This fixed overlap must be at least as large as the minimum overlap.
If minimum overlap is specified then the size of the overlap will shrink during grid refine-
ment and the hole boundary will approach the inner grid boundary. Fixed overlap will cause
the hole boundary to stay in the same location during grid refinement although small changes
may occur due to improved resolution of the specified hole region by the background grid.

To fully investigate the spatial order or accuracy of our fractional-step overset grid scheme
we considered the four cases shown in Table I. One of the benefits of the Taylor vortex array
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TABLE I

Taylor Vortex Grid and Flow Configuration Cases

Case Inner grid angle Vortex shift

I 15◦ (0, 0)

II 15◦
(

π

4
,
π

4

)
III 15◦

(
π

2
,
π

2

)
IV 45◦

(
π

2
,
π

2

)

as a test problem is that we can easily shift the vortices and expose the background grid hole
boundary to different flow conditions. We performed a grid refinement study for each case
with both fixed and minimum overlap. The hole region in the background grid for each fixed-
overlap case was chosen to satisfy the minimum overlap requirement for the coarsest grid,
thereby satisfying the minimum overlap requirement for the finer grids. A sequence of four
overset grids was used for each grid refinement study: (24 × 24) ∪ (16 × 16), (48 × 48) ∪
(32 × 32), (96 × 96) ∪ (64 × 64), and (192 × 192) ∪ (128 × 128), where the background
grid is listed first.

We computed each solution until t = 1.0 using the same time step for all grids and the
time advancement algorithm shown in Eq. (8). The initial condition was set to the analytical
solution shown in Eq. (48) and then projected using the solution to Eq. (44). The viscous
terms on the inner grid were treated implicitly while the other terms and all the terms on
the background grid were treated explicitly. The coupled Poisson equation was solved with
an alternating Schwarz method using an agglomeration multigrid algorithm [11] on each
component grid and an acceleration parameter [6] to reduce the number of outer iterations.

Time histories of the root mean square (rms) error in the computed u component of the
velocity on the inner grid for fixed overlap are shown in Fig. 3. In all four cases, the error
histories show second-order spatial accuracy. Similar plots for minimum overlap computa-
tions are shown in Fig. 4. The spatial order of accuracy is clearly degraded for the minimum
overlap computations except for case IV. The degradation of the spatial order of accuracy
for the minimum overlap simulations appears to be inconsistent with the analytical work
of Chesshire and Henshaw [2] on the interpolation order of accuracy required to maintain
the overall spatial order of accuracy. In order to investigate this inconsistency, we consider
the steady, incompressible Stokes equations in two dimensions. To reduce the complexity
of the analysis, we perform a Fourier transform on the equations in the y-direction:

∂ p̂

∂x
= ∂2û

∂x2
− k2û

ik p̂ = ∂2v̂

∂x2
− k2v̂ (49)

0 = ∂ û

∂x
+ ikv̂.

Now that the problem has been reduced to a one-dimensional system of equations with a
parameter, k, we discretize Eq. (49) on the overset, staggered grid shown in Fig. 5. The
physical boundaries of the computational domain are located at Xx1

0 and Xx2
N2

. The
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FIG. 3. Taylor vortex u velocity component rms error histories on inner grid. Fixed overlap grid refinement
study.

discretized û component of velocity is stored at the Xx locations and the discretized v̂

component and pressure are stored at the Xy locations. The û pseudoboundary nodes are
located at Xx1

N1
and Xx2

0 on component grids 1 and 2, respectively. The v̂ pseudoboundary
nodes are located at Xy1

N1+1 and Xy2
0 on component grids 1 and 2, respectively. In Fig. 5 there

is sufficient overlap so that pseudoboundary nodes are not used for quadratic interpolation
to the other component grid, as dictated by our formulation. If higher order interpolation is
used then the required component grid overlap will become larger.

We apply second-order-accurate finite differences to Eq. (49) to obtain the set of discrete
equations on each component grid:

p̂l
j+1 − p̂l

j

�xl
= ûl

j+1 − 2ûl
j + ûl

j−1

�x2
l

− k2ûl
j for j = 1 : Nl − 1, (50)

ik p̂l
j = v̂l

j+1 − 2v̂l
j + v̂l

j−1

�x2
l

− k2v̂l
j for j = 1 : Nl , (51)

δl
k,0 = ûl

j − ûl
j−1

�xl
+ ikv̂l

j for j = 1 : Nl . (52)
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FIG. 4. Taylor vortex u velocity component rms error histories on inner grid. Minimum overlap grid refinement
study.

In anticipation of the correction to the right hand side of the Poisson equation that will
be required to guarantee solvability, the discrete continuity equation for k = 0 is modified
with the term δl

k,0. In making this modification, we have assumed that the same correction
will be applied to every equation in the Poisson solve on each component grid and that the
correction is constant in the y-direction.

FIG. 5. One-dimensional overset staggered grid.
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The discrete equations (50)–(52) are supplemented by interpolation equations for the
pseudoboundary nodes,

û1
N1

=
q−1∑
m=0

α1
mû2

a+m

v̂1
N1+1 =

q−1∑
m=0

β1
m v̂2

b+m

(53)

û2
0 =

q−1∑
m=0

α2
mû1

c+m

v̂2
0 =

q−1∑
m=0

β2
m v̂1

d+m,

where q is the order of accuracy of the interpolation and αl
m and βl

m are interpolation
weights.

We first consider the case where k = 0. In this case, the discrete momentum equations
are decoupled from one another. The v̂ momentum equation (51) is a second-order-accurate
discretization of a second-order elliptic equation. The û momentum equation (50) is also a
second-order accurate discretization of a second-order elliptic equation with the pressure
gradient as a source term. The analysis of Chesshire and Henshaw [2] shows that third-
order-accurate interpolation is sufficient to maintain second-order accuracy in the solution
of a second-order equation if the component grid overlap shrinks during grid refinement.
Results from numerical tests for k = 0 agree with their analysis and are not presented
here.

We now consider the case where k �= 0. Using Eq. (52), we can write v̂ in terms of û,

v̂l
j = i

k

ûl
j − ûl

j−1

�xl
for j = 1 : Nl , (54)

and Eq. (54) can then be used in Eq. (51) to solve for the pressure:

p̂l
j = û j+1 − û j − 2

(
ûl

j − ûl
j−1

) + v̂l
0

k2�x3
l

− ûl
j − ûl

j−1

�xl
for j = 1,

p̂l
j = û j+1 − û j − 2

(
ûl

j − ûl
j−1

) + ûl
j−1 − ûl

j

k2�x3
l

− ûl
j − ûl

j−1

�xl
for j = 2 : Nl − 1, (55)

p̂l
j = v̂l

Nl+1 − 2
(
ûl

j − ûl
j−1

) + ûl
j−1 − ûl

j

k2�x3
l

− ûl
j − ûl

j−1

�xl
for j = Nl .

Finally, Eq. (55) can be used in Eq. (50) to determine a new discrete equation for û:

ûl
j+2 − 4ûl

j+1 + 6ûl
j − 3ûl

j−1 − k�xl
i v̂l

0

k2�x4
l

− ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

= ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

− k2ûl
j for j = 1, (56)
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ûl
j+2 − 4ûl

j+1 + 6ûl
j − 4ûl

j−1 + ûl
j−2

k2�x4
l

− ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

= ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

− k2ûl
j for j = 2 : Nl − 2, (57)

k�xl
i v̂l

Nl+1 − 3ûl
j+1 + 6ûl

j − 4ûl
j−1 + ûl

j−2

k2�x4
l

− ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

= ûl
j+1 − 2ûl

j + ûl
j−1

�x2
l

− k2ûl
j for j = Nl − 1. (58)

We now have a single discrete equation for û that is algebraically equivalent to the
original system of equations for û, v̂, and p̂. Equation (57) shows that the equation for the
majority of the interior nodes on each component grid is the second-order discretization of
the fourth-order equation

1

k2

∂4û

∂x4
− 2

∂2û

∂x2
+ k2û = 0, (59)

which can be derived from Eq. (49). However, Eqs. (56) and (58) for the û nodes adjacent to
the boundary nodes of the component grids show a modification to the discretization of the
fourth-order derivative due to the implementation of the boundary conditions in the original
discretized system of Eqs. (50)–(52). We assume that the modification to the evaluation of
the fourth-order derivative at a node adjacent to a physical boundary node does not affect
the spatial order of accuracy of the solution since a single-grid solution of Eqs. (50)–(52)
shows second-order spatial accuracy. However, the equation for a û node adjacent to a
pseudoboundary node should be consistent with a second-order evaluation of Eq. (59).

On component grid 1 in Fig. 5, the fourth-order derivative term in the discrete equation
for û at Xx1

N1−1 (58) involves v̂1
N1+1, which is interpolated from component grid 2. Using

the interpolation equations (53), Eq. (54), and a Taylor series expansion, we can rewrite the
term with v̂1

N1+1 as follows:

k�x1

i
v̂1

N1+1 = k�x1

i

q−1∑
m=0

β1
m v̂2

b+m = �x1

�x2

q−1∑
m=0

β1
m

(
û2

b+m − û2
b+m−1

)

= �x1

�x2

(
û

(
X y1

N1+1 + �x2

2

)
− û

(
X y1

N1+1 − �x2

2

))
+ O

(
�xq

2

)

= û

(
X y1

N1+1 + �x1

2

)
− û

(
X y1

N1+1 − �x1

2

)

+
(
�x1�x2

2 − �x2
1�x2

)
24

∂3û

∂x3

(
X y1

N1+1

) + O
(
�xq

2

)
= û1

N1+1 − û1
N1

+ O
(
�x1�x2

2 − �x2
1�x2

) + O
(
�xq

2

)
. (60)

Therefore, the modified fourth-order derivative at Xx1
N1−1 is equivalent to a standard second-

order discretization at Xx1
N1−1 using values at two interpolation points, Xx1

N1
and Xx1

N1+1.
However, the interpolation is only third-order accurate if �x1 �= �x2, as shown in Eq. (60).
Note that we do not directly interpolate at Xx1

N1+1 since that node does not exist in our
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original discretization. The same approach can be used to show that the modified fourth-
order derivative in the equation for û at Xx2

1 on component grid 2 is equivalent to a standard
second-order discretization using values at two interpolation points, Xx2

−1 and Xx2
0.

The analysis of Chesshire and Henshaw [2] proves that third-order-accurate interpolation
is sufficient to maintain second-order accuracy in the solution of a fourth-order equation if
the component grid overlap is fixed. If the overlap between the component grids shrinks
during grid refinement then fifth-order interpolation is required. Combining our analysis
with the work of Chesshire and Henshaw [2], we predict that if �x1 = �x2, then the solu-
tion of Eqs. (50)–(52) will be second-order accurate for the minimum overlap case if the
interpolation weights in Eq. (53) are fifth-order accurate. However, if �x1 �= �x2 then only
the fixed-overlap case will produce second-order accuracy due to the third-order error term
in Eq. (60).

In order to test our conclusions regarding the spatial order of accuracy of the overset
grid solution of Eq. (49), we solve Eqs. (50)–(52) on the domain [0, 2π ] using the overset
grid in Fig. 5 with Dirichlet boundry conditions for the velocity components at the domain
boundaries. The left boundary of component grid 2 is fixed in space at x = 4π/5 for
all simulations. The right boundary of component grid 1 is at x = 6π/5 for the fixed-
overlap simulations and is closer to the left boundary of component grid 2 for the minimum
overlap simulations, as dictated by the width of the interpolation stencil. We add a forcing
term to the right hand side of the momentum equations so that the analytical solution is
spatially equivalent to the Taylor vortex array. The discrete equations are solved in the
same manner as the time-accurate simulations of the Taylor vortex array until a steady-state
solution is reached.

Errors in the numerical solution for the imaginary part of û for k = 1 when �x1 = �x2

are shown in Fig. 6. As predicted by our analysis, fifth-order interpolation weights are
required to maintain the second-order accuracy of the numerical solution if the com-
ponent grid overlap shrinks during grid refinement. Similar results for the case where
�x1 �= �x2 are shown in Fig. 7. In this case, the results show that it is not possible to achieve

FIG. 6. û error in numerical solution of Stokes equations for k = 1 on a one-dimensional overset grid with
�x1 = �x2.
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FIG. 7. û error in numerical solution of Stokes equations for k = 1 on a one-dimensional overset grid with
�x1 = 5

4
�x2.

second-order spatial accuracy unless the overlap of the component grids is held fixed during
grid refinement.

Analysis has shown that our discretized system of second-order equations behaves like a
discretized fourth-order equation. Note that this is not an artifact of the staggered grid system.
An analysis of a collocated grid solution to Eq. (49) reveals that the equivalent fourth-order
discretized equation has modified terms at two nodes ajacent to a pseudoboundary node
instead of the single node that occurs for the staggered grid system. This is due to the fact that
the continuity equation and the pressure gradient term are discretized on cells of length 2�x
in the collocated grid discretization (leading to odd–even decoupling of the pressure field).
Our analysis can easily be extended to three dimensions by considering the Stokes equations
after Fourier transformations in two directions. Since the required order of interpolation in
an overset grid solution is controlled by the highest order derivative in the equation, our
analysis should extend directly to the Navier–Stokes equations. This conclusion is supported
by the results of the time-dependent simulations of the Taylor vortex array.

Our analysis and results have shown that the overset grid fractional-step method maintains
the correct spatial order of accuracy only if the overlap of the component grids is held fixed
during grid refinement (except for special cases). Henshaw [5] has shown results where
fourth-order spatial accuracy is maintained in the solution of the velocity–pressure formu-
lation of the Navier–Stokes equations when the overlap shrinks during grid refinement. The
difference between the results of the two approaches is due to the enforcement of the discrete
continuity equation. We have shown that when the discrete continuity equation is enforced,
the second-order discretization of the system of second-order equations is equivalent to a
second-order discretization of a fourth-order equation, and the equivalent equations for the
nodes near the pseudoboundaries lead to degradation of the spatial order of accuracy in the
case of minimum overlap. In the velocity–pressure formulation, the continuity equation is
replaced by an elliptic equation for the pressure, and discrete continuity is enforced only to
within the truncation error of the discretization. The discretization of the velocity–pressure
formulation leads to a system of second-order equations that are effectively decoupled from
one another. Therefore, the analysis of Chesshire and Henshaw [5] for second-order elliptic
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equations can be directly applied and the correct spatial order of accuracy can be maintained
in the case of minimum overlap.

3.2. Temporal Order of Accuracy

The flow over a circular cylinder at Re = 100 is a more complex flow, both temporally
and spatially, than the Taylor vortex array. Though we do not have an analytical solution, we
can still use the numerical solution to verify that the predicted temporal order of accuracy
is maintained. It is important to verify the time accuracy of the numerical solution since
we wish to use different time integration schemes on different component grids and we are
forced to make a time-dependent adjustment to the right hand side of the discrete continuity
equation.

The problem setup is similar to that in [5]. The computational domain is [x1, x2] ×
[y1, y2] = [−2.5, 15] × [−3.5, 3.5] with a cylinder of radius 0.5 centered at the origin. A
uniform inflow condition is applied at the left boundary and slip walls are used on the top
and bottom boundaries. A convective boundary condition of the form

∂u
∂t

+ U∞
∂u
∂x

= 0 (61)

is used at the right boundary. A portion of the (175 × 70) ∪ (20 × 64) grid used for this
test problem is shown in Fig. 8. The background grid has a uniform grid spacing of 10 cells
per cylinder diameter. The cylindrical grid extends one diameter from the cylinder surface
and is stretched to resolve the flow close to the cylinder surface. The overlap is set using
the minimum overlap criteria dictated by the biquadratic interpolation stencil.

The desired flow condition for the time accuracy study was the shedding cylinder. In order
to reach this condition, we ran the code from an appropriately projected initial condition

FIG. 8. Grid and vorticity contours from overset grid simulation of flow over a circular cylinder at Re = 100.
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FIG. 9. Cylindrical grid time accuracy for solution of flow over a circular cylinder at Re = 100.

of potential flow around a cylinder using the time advancement algorithm in Eq. (8) with
a variable time step. The cylindrical grid was time advanced with implicit treatment of
the radial viscous terms while the background grid used fully explicit time advancement.
The convective boundary condition was time advanced with third-order Runge–Kutta and
the streamwise component of velocity at the right boundary was then adjusted to conserve
mass. The solution of the coupled Poisson equation for the pressure was obtained using the
iterative solver described in the previous section.

During time advancement, a symmetric recirculation region develops behind the cylinder
and vortex shedding is eventually induced due to truncation and round-off errors in the
numerical solution [8]. However, this process is extremely slow and the vortex shedding
was not clearly visible in our simulations until t = 175. Though the delayed vortex shedding
is inconvenient, it provides confidence in the quality of our numerical method. Kravchenko
et al. [8] use B-splines and a zonal grid well suited to the solution of flow over a circular
cylinder and they report that the flow at Re = 100 tended to stay symmetric up to t = 200.
Vorticity contours from the shedding cylinder simulations are shown in Fig. 8.

Starting with the shedding cylinder as an initial condition, we ran the code for a length of
time close to the maximum allowable time step. In this case the cylindrical grid convective
terms and explicitly treated azimuthal diffusive terms contribute equally to the time-step
restriction. The number of time steps used to cover the time interval was varied from 1 to
32 and an “exact” solution was computed with 160 time steps. We then computed the rms
error on the cylindrical grid between each of the solutions and the “exact” solution. The
results are shown in Fig. 9. The velocity components are second-order accurate in time and
the pressure is first-order accurate.

Though we do not wish to perform a detailed investigation of this flow, it is important
to verify that our overset grid code produces results that are consistent with previously
published studies. The computational domain and grid sizes used for the time accuracy
study are too small to provide accurate measurements of the lift and drag on the cylinder.
We performed additional simulations in the computational domain [x1, x2] × [y1, y2] =
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TABLE II

Shedding Cylinder Results

Case Cmax
D Cmax

L St

Overset 1.413 0.342 0.173
Kravchenko 1 1.405 0.350 0.167
Kravchenko 13 1.314 0.314 0.164

[−6, 15] × [−10.5, 10.5] on a (256 × 256) ∪ (96 × 128) grid where the cylindrical grid
extended to r = 3 diameters. Once vortex shedding was visible, we ran the code with
a constant time step until a statistically steady flow pattern was reached. Statistics from
this flow pattern along with results from [8] are shown in Table II. Kravchenko’s case 1
was a simulation with a domain radius and radial grid spacing at the cylinder surface that
are similar to those in our simulation while case 13 used a much larger domain and a
smaller radial grid spacing at the cylinder surface. Our results differ by less than 5% when
compared to Kravchenko’s case 1 results and they differ by less than 10% when compared
to Kravchenko’s case 13 results.

4. CONCLUSIONS

We have derived a fractional-step method for overset grids using an approximate LU
decomposition of the coupled system of discretized component grid equations. The factor-
ization of the system of equations is independent of the grid scheme and spatial discretization
and is consistent with well-established methods used for single-grid calculations. Hybrid
implicit/explicit time advancement schemes can be used with different treatment of terms on
different component grids to alleviate time-step restrictions. All the details of the coupling
between the grids are clear from the factorization, including the coupling of the pressure
fields.

A particularly simple implementation of the algorithm is possible for component grids
with a staggered grid arrangement of the dependent variables and second-order-accurate
finite-volume flux differencing. This implementation was tested to investigate the spatial
and temporal orders of accuracy of the solution. The second-order spatial accuracy was
maintained for all cases considered provided that the grid overlap was held fixed during
grid refinement. The temporal order of accuracy of the overset grid solution was shown to
be consistent with the implementation of the time advancement algorithm on a single grid.
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